Robert Corriu
Peter Jutzi
(Eds.)

Tailor-made
Silicon-Oxygen
Compounds

From Molecules to Materials
12 Octasilasesquioxanes

Gion Calzaferri

Institute for Inorganic and Physical Chemistry
University of Bern, Freiestrasse 3
CH-3000 Bern 9, Switzerland

Abstract: Octasilasesquioxanes show a cube-shaped Si$_8$O$_{12}$ unit. We distinguish between the spherolixane molecules, the ionic silicates ($X^+)_8$(Si$_8$O$_{20})^-$, and the Si$_8$O$_{12}$ cages present in polymeric materials. While a respectable number of R$_8$Si$_8$O$_{12}$ compounds are known, only a few R'R$_8$Si$_8$O$_{12}$ and even less R'R$_8$Si$_8$O$_{12}$ and RR'R'R$_8$Si$_8$O$_{12}$ have been isolated so far. The crystal structures of n-hexyl-H$_7$Si$_8$O$_{12}$, phenyl-H$_7$Si$_8$O$_{12}$, and Co(CO)$_4$-H$_7$Si$_8$O$_{12}$ and the vibrational structure of them and also of styril-H$_7$Si$_8$O$_{12}$ and phenyl-H$_7$Si$_8$O$_{12}$ were examined in detail. The best studied octasilasesquioxane molecule is H$_8$Si$_8$O$_{12}$. Its crystal-, vibrational-, and electronic structure were investigated in detail. H$_8$Si$_8$O$_{12}$ + Y-Z \rightarrow YH$_7$Si$_8$O$_{12}$ + HZ etc. substitution reactions under retention of the cage are available and it seems that they are of radical type. O$_{16}$-H$_8$Si$_8$O$_{12}$ is an excellent molecule for introducing the notion of ring opening vibrations. They open a gate for studying the pore opening vibrations which are believed to play an important role in the dynamics and the transport properties of zeolites. It is amazing that among the many orbitals of O$_{16}$-H$_8$Si$_8$O$_{12}$ there is exactly one of A$_{2g}$ symmetry. This pure oxygen-lone pair, which cannot interact with AOs from other centres than oxygen, is the highest occupied orbital (HOMO), followed by a number of oxygen lone pairs between -10.75 and -11.7 eV which interact only slightly with the Si atoms. H$_8$Si$_8$O$_{12}$ was shown to be useful to improve our understanding of the electronic nature of extended structures by comparing its properties with those of α-quartz and with the results of band structure and density of states calculations of the silicon dioxide analogue of zeolite A. R'R"R$_6$Si$_8$O$_{12}$ molecules are very attractive for building structurally well defined donor/acceptor systems D/A in which the distance between D and A is varied by the number of intervening groups in a molecular bridge. It would be very interesting to have such molecules at hand. The Si-O-Si bridge is not well understood but quantumchemical calculations indicate that through bond interactions over short bridges range from isolating behaviour to significant coupling, depending on the nature of the substituents and on the conformation.

12.1 Introduction

Octasilasesquioxanes with the general formula R$_8$Si$_8$O$_{12}$, R$_7$R'Si$_8$O$_{12}$ etc. show a cube-shaped Si$_8$O$_{12}$ unit as illustrated in Figure 1. They are probably the best studied members of the large class of silasesquioxanes (RSiO$_{3/2}$)$_{2n}$, n=1,2,3 etc., which has attained much interest in the last few years. We distinguish between the spherolixanes, the ionic silicates ($X^+)_8$(Si$_8$O$_{20})^-$ and the Si$_8$O$_{12}$ cages present in polymeric materials. All or some of
the Si can be replaced by other tetrahedrally co-ordinated atoms such as Al, P, Ga or Ge to obtain the T_8O_{12} cages occurring in several zeolites as "double-4-ring" D4R secondary building units [1]. The silicate [2,3] $[Si_8O_{20}]^{8-}$ and the aluminosilicate anions [4,5] $[(Al_4Si_4O_{12})(OH)_8]^{4+}$ have been well characterized. They play a role as intermediates in the synthesis of some zeolites [2-6]. A T_8O_{12} cage of $[(RSi)_4(R'Ti)_4O_{12}]$ composition was reported recently [7].

![Figure 1: Structure of the (-Si)$_8$O$_{12}$ cage. R, r, α, β, ϕ, and τ are the internal coordinates.](image)

The first octaspherioloxane molecule, $(CH_3)_8Si_8O_{12}$, can be traced back to Scott who reported in 1946 the synthesis of $(CH_3SiO_{3/2})_{2n}$ compounds which he was, however, not able to further identify because of solubility problems [8]. Müller et al. described the preparation of $H_8Si_8O_{12}$ crystals in 1959 and made the right guess of its structure [9]. Larsson published an X-ray analysis of $R_8Si_8O_{12}$ ($R = CH_3$, n-C$_3$H$_7$, i-C$_3$H$_7$, Phenyl, and H) in three papers in 1960 [10]. Additional $R_8Si_8O_{12}$ were prepared and studied during the following years [11], but larger interest in spherioloxanes and especially octaspherioloxanes started after 1985. Since then an increasing number of $R_8Si_8O_{12}$, some $R'RR_7Si_8O_{12}$, and a few $R'_2R_6Si_8O_{12}$ and $R'R'R_5Si_8O_{12}$ compounds have been synthesized. An overview is given in Table 1. Some of these compounds have been discussed as building blocks for the preparation of highly silicic materials or as starting molecules for new organosilicic polymers. Recently, stable encapsulation of atomic hydrogen upon γ-irradiation of $[(CH_3)_3SiO]_8Si_8O_{12}$ was reported [12]. Among the $R_8Si_8O_{12}$ molecules, $H_8Si_8O_{12}$ has especially attracted our interest [13]. It is a stable molecule which can be prepared easily in good yield by acidic hydrolysis of SiHCl$_3$ in a biphasic solution in presence of FeCl$_3$ [14]. We have shown that it is an ideal model for obtaining information on the electronic [15], the vibrational [16,17], and the crystal structure of more extended silicous materials [1]. It turned out to be a suitable starting molecule for synthesizing mono and higher substituted octanuclear silasesquioxanes [18-27]. $H_8Si_8O_{12}$ and also other hydrospherioloxanes were recently discussed as precursors for atomic scale control of the Si/SiO$_2$ interface [28].
Table 1: Octasilasesquioxanes reported in the literature, an overview.

<table>
<thead>
<tr>
<th>R₈Si₈O₁₂</th>
<th>R=</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>CH₃, C₂H₅, C₃H₇, CHMe₂, C₄H₉, C₅H₁₁, C₆H₁₃, i-C₅H₁₉, C₆H₁₁, CH=CH₂, CH₂CH=CH₂, C₆H₅, 4-Tolyl, X-NO₂C₆H₄, 1-Naphtyl, 2-C₆H₅S, 2-C₄Br₅S, OSiMe₃, ONMe₄ (= [NMe₄⁺][Si₈O₂₀]⁻), Cl, OMe</td>
<td>[11]</td>
</tr>
<tr>
<td>OSiMe₂CH=CH₂, OSiMe₂CH₂CH=CH₂, OSiMe₂H</td>
<td></td>
<td>[29]</td>
</tr>
<tr>
<td>OSiMe₂H</td>
<td>p-C₆H₄CH₂X, X=I, OH,ONO₂, OAc, p-Nitrobenzoyl, Methylterephthaloyl, OPPh₂, P(O)Ph₂, PPh₂</td>
<td>[30]</td>
</tr>
<tr>
<td>OSiMe₂CH₂Cl</td>
<td></td>
<td>[31]</td>
</tr>
<tr>
<td>D</td>
<td>OSnMe₃, OSbMe₄</td>
<td>[32,33]</td>
</tr>
<tr>
<td>CH₂C₆H₁₁</td>
<td></td>
<td>[19]</td>
</tr>
<tr>
<td>2-C₆H₄NMe₂</td>
<td>(η-C₅H₅)Fe(η-C₅H₄CH₂CH₂)SiMe₂O⁻</td>
<td>[20]</td>
</tr>
<tr>
<td>C₁₀H₂₁, C₁₄H₂₉, C₁₄H₃₆, C₄H₅[SiMe₂O]₃SiMe₂CH₂CH₂⁺, C₄H₅[SiMe₂O]₂SiMe₂CH₂CH₂⁺, CH₂CH₂CH₂X</td>
<td>[35]</td>
<td></td>
</tr>
<tr>
<td>CH₂CH₂CH₂X, X=Cl, I, SH, SMe, -CN, -SCN, SiMe₃, C₆H₅, -OC₆H₅, -OC₆H₅, P(C₆H₅)₂, (-O-SiMe₂(CH₂CH₂X), X = CH₂(C₂Me)B₁ₙH₁₀, C₅H₅MeMn(CO)₃, SiMeC₂H₄FeC₅H₅, SiMeCl₂, Si(OEt)₃</td>
<td>[36]</td>
<td></td>
</tr>
<tr>
<td>R'R₇Si₈O₁₂</td>
<td>R=...; R'</td>
<td>[21]</td>
</tr>
<tr>
<td>H; CH₃(CH₂)₄CH₂⁻, C₆H₅CH₂CH₂⁻</td>
<td></td>
<td>[22]</td>
</tr>
<tr>
<td>H; [η-C₅H₅]Fe(η-C₅H₄CH₂CH₂)]⁻</td>
<td></td>
<td>[23]</td>
</tr>
<tr>
<td>H; Co(CO)₄</td>
<td></td>
<td>[24]</td>
</tr>
<tr>
<td>H; C₆H₅CH=CH⁻</td>
<td></td>
<td>[25]</td>
</tr>
<tr>
<td>H; C₁₀H₇CH₂CH₂⁻, C₁₄H₉CH₂CH₂⁻, -O-(HSi₈O₁₂)</td>
<td></td>
<td>[26]</td>
</tr>
<tr>
<td>H; C₆H₅</td>
<td></td>
<td>[27]</td>
</tr>
<tr>
<td>HSiMe₂O;[η-C₅H₅]Fe(η-C₅H₄CH₂CH₂)SiMe₂O⁻</td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>CH₃CH₂; [Cr(CO)₃]C₆H₅CH₂CH₂⁺</td>
<td></td>
<td>[29]</td>
</tr>
<tr>
<td>C₃H₇; 3-ClC₃H₆, 3-IC₃H₆, 3-HSC₃H₆, C₃H₅</td>
<td></td>
<td>[30]</td>
</tr>
<tr>
<td>CH₂CH₂; C₂H₃</td>
<td></td>
<td>[31]</td>
</tr>
<tr>
<td>c-C₇H₁₃, c-C₆H₁₁, and c-C₅H₅; methylacrylate</td>
<td></td>
<td>[32]</td>
</tr>
<tr>
<td>c-C₆H₁₁; [...]-O-(AlSi₇O₁₂)R'⁺, [Me₃Sb]⁺</td>
<td></td>
<td>[33]</td>
</tr>
<tr>
<td>c-C₆H₁₁; H, Cl, -CHPMMe₃, -CHPPh₃</td>
<td></td>
<td>[34]</td>
</tr>
</tbody>
</table>
12.2 Synthesis of octaspherocisiloxane molecules

A general procedure to prepare spherocisiloxanes is polycondensation of trifunctional RSiX₃ monomers, X = Cl or OR. Synthesis of an aminoorganyl substituted octasilaseloquioxide starting from a zwitterionic λ₅-spirosilicate was recently reported [35]. It is remarkable that the first Si-X substitution reaction X₈Si₈O₁₂ + Y-Z → Y₈Si₈O₁₂ + 8XZ (X = H or Cl, Y = Cl, OSiMe₃ or OCH₃) was reported by Klemperer and co-workers as late as 1985 [18]. Reactions of the silicates (X⁺)₈Si₈O₂₀ which are eg. used to prepare [(CH₃)₃SiO]₈Si₈O₁₂ have been known much longer [29]. We deuterated H₈Si₈O₁₂ completely [19] and we found that hydrosilolation of methylenecyclohexane and of hex-1-ene by H₈Si₈O₁₂ catalysed by hexachloroplatinitic acid leads quantitatively to the corresponding R₈Si₈O₁₂ product [20]. Hydrosilolation was successfully applied for the preparation of a number of mono- and disubstituted RR'R₇Si₈O₁₂ and RR"R₆Si₈O₁₂ molecules [21,22,24-27,39,40]. The first octasilaseseloquioxide with a Si-metal bond, [Co(CO)₄]H₇Si₇O₁₂, was obtained by reacting [Co₂(CO)₈] with H₈Si₈O₁₂ according to [23].

![Scheme I](image-url)

This means that substitution reactions under retention of the cage structure are available and this might be used for stereoselective reactions. It seems that the mechanism of the so far unknown H₈Si₈O₁₂ - complex is a coordination-insertion mechanism.
known \(\text{X}_8\text{Si}_8\text{O}_{12} + \text{Y-Z} \rightarrow \text{YH}_7\text{Si}_8\text{O}_{12} + \text{XZ} \) etc. reactions is of radical type and that it can be described by Scheme II. This is based on a theoretical study of the deuteration \(\text{H}_8\text{Si}_8\text{O}_{12} + \text{D}_2 \rightarrow \text{D}_8\text{Si}_8\text{O}_{12} \) and on the observation that all attempts to apply nucleophilic substitution results in destruction of the cage [15].

Scheme II

Three general ways for synthesizing monosubstituted \(\text{R}'\text{R}_7\text{Si}_8\text{O}_{12} \) molecules have been used so far. They are summarized in Scheme III.

a) \(7 \text{RSiY}_3 \) + \(\text{R'SiY}_3 \)

b) \(\text{R} \) + \(\text{R}' \)

c) \(\text{OH} \) + \(\text{R}'\text{SiY}_3 \)

Scheme III

a) The classical route to spherisoloxanes is polycondensation of trifunctional \(\text{RSiY}_3 \) monomers. We have applied it for the synthesis of the monophenylsilasesquioxanes \(\text{C}_6\text{H}_{5-} (\text{H}_{n-1}\text{Si}_n\text{O}_{1.5n}) \) \(n=8 \) and 10 which cannot be prepared by hydrosilation [40]. b) is probably the most generally applicable principle because of the easy availability of \(\text{H}_8\text{Si}_8\text{O}_{12} \) and most of the known mono and disubstituted \(\text{R}'\text{R}_7\text{Si}_8\text{O}_{12} \) and \(\text{R}'\text{R}_7^*\text{Si}_8\text{O}_{12} \) have been prepared in this way. It can also be applied to other hydrosilasesquioxanes such as \(\text{H}_{10}\text{Si}_{10}\text{O}_{15} \). a) and b) lead to mixtures which can be separated by HPLC. c) was developed by Feher. It has the advantage of leading to one product only [43].

12.3 \(\text{H}_8\text{Si}_8\text{O}_{12} \) - an ideal model compound

\(\text{H}_8\text{Si}_8\text{O}_{12} \) is a stable molecule. It crystallizes in \(n \)- or \(c \)-hexane to give colourless needles which sublime at ambient pressure with a sublimation enthalpy and temperature of \(\Delta H_{\text{subl}} = 98.5 \text{ kJ/mol} \) and \(T_{\text{subl}} = 206 ^\circ\text{C} \), respectively. Its crystal structure was studied in much detail with special emphasis on the flexibility of the Si-O-Si bridge. \(T_h \) symmetry for the \(\text{Si}_8\text{O}_{12} \) framework and \(S_6 \) symmetry for the eight H atoms were found in the crystalline state [48,49]. A systematic investigation of structural distortion in \(\text{Si}_8\text{O}_{12} \) fragments and D4R units lead to the result, that most of the deformations observed in \(\text{T}_8\text{O}_{12} \) correspond to those
expected from a model of rigid tetrahedra joined flexibly across corner-sharing oxygen atoms [1]. The symmetry deformation coordinates found to be important in the analysis of static distortions are the same as the coordinates associated with the six lowest vibrational frequencies of H$_{8}$Si$_{8}$O$_{12}$, namely the δ(Si-O-Si) E$_g$ at 83 cm$^{-1}$, the δ(Si-O-Si) T$_{2u}$ at 68 cm$^{-1}$ and the τ$_{2u}$(Si-O-Si) A$_{2g}$ at 53 cm$^{-1}$ reported in Table 2. Raman [16] and INS (inelastic neutron scattering) [50] spectra of crystalline samples are fully compatible with the solid state structure while the IR as well as the 1H and 29Si NMR spectra indicate O$_6$ symmetry in solution. The 1H NMR spectrum is illustrated in Figure 2. It consists of a single line at 4.24 ppm. The satellites are due to geminal and vicinal 1H, 29Si coupling, respectively.

![Figure 2: 1H-NMR spectrum of H$_{8}$Si$_{8}$O$_{12}$ (300 MHz, CDCl$_3$, ppm). Peaks marked by a * indicate bands due to geminal Si-H coupling with 29Si and the two arrows indicate vicinal H-Si-O-Si coupling.](image.png)

![Figure 3: IR Transmission spectrum of H$_{8}$Si$_{8}$O$_{12}$. Left: Experimental spectrum measured in CCl$_4$ with a resolution of 0.5 cm$^{-1}$. Right: Calculated spectrum. It consists only of fundamentals while overtone and combination bands are present in the experimental spectrum.](image.png)
Octasilasesquioxanes

O₉-H₈Si₈O₁₂ possesses 78 vibrational degrees of freedom. From its symmetry follows that the IR spectrum consists of 6 fundamental IR active modes, all of T¹u type. The resulting bands are shown in Figure 3 and compared with a calculated spectrum based on an experimental force field determined by us [16]. The calculated bands of the fundamentals are in close agreement with the observed frequencies and relative intensities. Harmonic correction of the experimental Si-H stretching frequencies shifts them close to the calculated values. This means that the force field is good, a conclusion which is supported by the data given in Table 2 were the experimental IR, Raman and INS fundamentals are compared with the calculated frequencies [50,51].

We have already stated that the IR spectrum as well as the ¹H and ²⁹Si NMR measurements indicate for H₈Si₈O₁₂ in solution O₉ symmetry while X-ray and neutron diffraction of crystals show T₈ for the Si₈O₁₂ framework and S₆ for the H atoms. Column I of Table 2 shows the results of the calculation in O₉ symmetry. Column II is based on S₆ symmetry which splits the O₉-T₁g band at 865 cm⁻¹ in an A₁g and an E₈ vibration at 865 and 815 cm⁻¹, respectively, and the E₈ vibration at 862 cm⁻¹ shifts to 815 cm⁻¹, in full agreement with the experiment, for details see refs. [16,17,51]. It was also shown that the force field determined for H₈Si₈O₁₂ is appropriate to describe the fundamentals of H₁₀Si₁₀O₁₅ [17,52].

We observed that H₈Si₈O₁₂ is an excellent starting point for studying the pore opening vibrations which are believed to play an important role in the dynamics and the transport properties of zeolites. A relation between H₈Si₈O₁₂ and H₂₄Si₂₄O₃₆ and the structure of Zeolite A is shown in Figure 4. Since H₂₄Si₂₄O₃₆ bears the structure of the sodalite cage, it may be used as a link to the many zeolites in which this structure is present. Several attempts were made to assign the observed vibrational modes to specific local structural features of zeolites and especially to pore opening vibrations. We have introduced the notion of ring opening vibrations (ROVI) of hydrosilasesquioxanes. Based on this we suggested a new way to study the pore opening vibrations of zeolites which simplifies the problem remarkably and thus leads to a better understanding of the more complex extended structures [17].

Table 2: Normal mode frequencies / cm⁻¹ of H₈Si₈O₁₂ [50,51].

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>IR</th>
<th>Raman</th>
<th>INS</th>
<th>I</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁g</td>
<td>2302</td>
<td>2301</td>
<td>2381</td>
<td>2381</td>
<td></td>
</tr>
<tr>
<td>T₂g</td>
<td>2286/2296</td>
<td>2301</td>
<td>2381</td>
<td>2381</td>
<td></td>
</tr>
<tr>
<td>T₁u</td>
<td>2277</td>
<td>2301</td>
<td>2381</td>
<td>2381</td>
<td></td>
</tr>
<tr>
<td>A₂u</td>
<td></td>
<td>2301</td>
<td>2381</td>
<td>2381</td>
<td></td>
</tr>
<tr>
<td>T₁g</td>
<td></td>
<td></td>
<td>1161</td>
<td>1161</td>
<td></td>
</tr>
<tr>
<td>E₈</td>
<td></td>
<td></td>
<td>1158</td>
<td>1158</td>
<td></td>
</tr>
<tr>
<td>T₁u</td>
<td>1141</td>
<td></td>
<td>1143</td>
<td>1143</td>
<td></td>
</tr>
<tr>
<td>T₂g</td>
<td>1117</td>
<td></td>
<td>1116</td>
<td>1115/1116</td>
<td></td>
</tr>
<tr>
<td>A₂u</td>
<td></td>
<td></td>
<td>1082</td>
<td>1081</td>
<td></td>
</tr>
<tr>
<td>E₈</td>
<td>932</td>
<td>916</td>
<td>922</td>
<td>916</td>
<td></td>
</tr>
<tr>
<td>Symmetry</td>
<td>IR</td>
<td>Raman</td>
<td>INS</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>T\textsubscript{2u}</td>
<td>883/897</td>
<td>916</td>
<td>918</td>
<td>908/918</td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2g}</td>
<td>879/890</td>
<td>890</td>
<td>882/894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1u}</td>
<td>881</td>
<td>881</td>
<td>871/881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1g}</td>
<td>817/870</td>
<td>865</td>
<td>815/865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{u}</td>
<td>817</td>
<td>862</td>
<td>815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{g}</td>
<td>697</td>
<td>688</td>
<td>691</td>
<td>686</td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2u}</td>
<td>675</td>
<td>682</td>
<td>676/682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2g}</td>
<td>608</td>
<td>613</td>
<td>611/613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{1g}</td>
<td>563</td>
<td>576</td>
<td>573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1u}</td>
<td>566</td>
<td>569</td>
<td>566/569</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1u}</td>
<td>465</td>
<td>481</td>
<td>477/481</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{1g}</td>
<td>456</td>
<td>446</td>
<td>446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{g}</td>
<td>423</td>
<td>423</td>
<td>423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2g}</td>
<td>414</td>
<td>418</td>
<td>413/418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1u}</td>
<td>399</td>
<td>397</td>
<td>397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{1g}</td>
<td>352</td>
<td>356</td>
<td>355/356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{2u}</td>
<td>314</td>
<td>304</td>
<td>303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2u}</td>
<td>286</td>
<td>303</td>
<td>302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2g}</td>
<td>171</td>
<td>168</td>
<td>167</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{u}</td>
<td>172</td>
<td>166</td>
<td>166</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E\textsubscript{g}</td>
<td>84</td>
<td>83</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T\textsubscript{2u}</td>
<td>65</td>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>liberation</td>
<td>49/54</td>
<td></td>
<td></td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>A\textsubscript{2g}</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>translation</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The ROVI are normal modes in which all Si-O stretching and/or O-Si-O angle bending displacements of the considered ring are in phase. The symmetry species of these modes are determined by the new sets of coordinates illustrated in Figure 5 for the hexaeder which represents the Si\textsubscript{8} cage of H\textsubscript{8}Si\textsubscript{8}O\textsubscript{12}. Each arrow is a representation of the corresponding 4-ring opening perpendicular to it. The displacements of these coordinates are breathing motions of the ring. This leads to the representations (1) for O\textsubscript{h}-H\textsubscript{8}Si\textsubscript{8}O\textsubscript{12} and (2) for O\textsubscript{t}-H\textsubscript{2}Si\textsubscript{24}O\textsubscript{36} in which RO stands for ring opening. 4R and 6R symbolize the Si\textsubscript{4}O\textsubscript{4} and the Si\textsubscript{6}O\textsubscript{6} rings, which are in fact 8- and 12-rings, respectively.
Figure 4: Relation between $\text{HgSi}_8\text{O}_{12}$ and $\text{H}_2\text{Si}_{24}\text{O}_{36}$, between $\text{HgSi}_8\text{O}_{12}$ and the 4DR of Zeolite A, and between $\text{H}_2\text{Si}_{24}\text{O}_{36}$ and the β-cage.

$\text{H}_8\text{Si}_8\text{O}_{12}$:

$$\Gamma^{4R}_{RO} = A_1g + E_g + 2T_{1u}$$ \hspace{1cm} (1)

$\text{H}_{24}\text{Si}_{24}\text{O}_{36}$:

$$\Gamma^{4R}_{RO} = A_1g + E_g + 2T_{1u}$$ \hspace{1cm} (2)

$$\Gamma^{6R}_{RO} = A_1g + 2T_{2g} + A_{2u} + 2T_{1u}$$

Figure 5: Set of equivalent coordinates defining the ring opening vibrations (ROVI) of a cube, especially O_h(-Si_8O_{12}).
Analysing the 78 normal modes of \(\text{O}_h\text{-H}_8\text{Si}_8\text{O}_{12} \) and the 246 ones of \(\text{O}_h\text{-H}_{24}\text{Si}_{24}\text{O}_{36} \) in detail allowed us to identify the 9 and the 19 ROVI, respectively, of the two molecules. The result of this analysis is illustrated in Figure 6 where we show a projection along the rotational axis perpendicular to the ring of the IR and Raman active ROVI. The front rings (straight lines) and the back rings (dashed lines) represent the positions with maximum potential energy in case of the IR active \(T_{1u} \) modes. For the Raman active \(A_{1g}, E_g \) and \(T_{2g} \) ROVI the two rings represent the positions of the front ring with maximum potential energy.

Figure 6: Ring opening vibrations (ROVI) of \(\text{O}_h\text{-H}_8\text{Si}_8\text{O}_{12} \) and \(\text{O}_h\text{-H}_{24}\text{Si}_{24}\text{O}_{36} \) projected along the rotational axis perpendicular to the ring. The amplitudes are magnified by a factor of ten. Si= full circles, O= open circles.
The energy of the 4- and of the 6-ring ROVI are within a range of 90 cm\(^{-1}\) (481-390 cm\(^{-1}\)) and (309-214 cm\(^{-1}\)) respectively, and the 6-rings vibrate at lower energy than the 4-rings. This result improves our understanding of the 4- and of the 6-ring pore opening vibrations of zeolites [16,17]. It is amazing that among the many orbitals of \(\text{O}_\text{h}-\text{H}_\text{8}\text{Si}_\text{8}\text{O}_{12}\) there is exactly one of \(A_{2g}\) symmetry [15]. This pure oxygen-lone pair, which cannot interact with AOs from other centres than oxygen, is the highest occupied orbital (HOMO), followed by a number of oxygen lone pairs between -10.75 and -11.7 eV which interact only slightly with the Si atoms. The HOMO-LUMO (lowest unoccupied molecular orbital) energy gap is in the order of 12 eV. A comparison of the calculated one-electron energy levels in the HOMO region and the measured photoelectron spectrum is illustrated in Figure 7. The calculated first ionization potential of 10.7 eV is low but in good agreement with the experimental observation. To get a feeling for the consequences of this relatively high lying HOMO, we compare it with the first ionization energy of water, observed at 12.6 eV and attributed to the energy of the p-type oxygen lone pair of the water molecule [53].

![Figure 7: Photoelectron spectrum of H\text{8}Si\text{8}O_{12} (a) and calculated one-electron levels (b). The \(A_{2g}\) symmetry of the HOMO localized at the O atoms is indicated.](image)

We note that the first ionization potential of \(\alpha\)-quartz is 10.4 eV, as determined by valence-band spectroscopy [54]. We have discussed the link of \(\text{H}_\text{8}\text{Si}_\text{8}\text{O}_{12}\) to zeolites from point of view of vibrations. A similar link is useful for improving our understanding of the electronic properties of extended structures [55]. In Figure 8 we illustrate the band structure and density of states of the silicon dioxide analogue of Zeolite A. We observe that the bands in the HOMO region are flat which indicates the presence of non bonding states. Further insight is gained from the density of states DOS(E), defined such that DOS(E)dE is the number of states in the interval E to E+dE. Since we are expressing the crystal orbitals as linear combination of atomic orbitals (LCAO) we can project out specific atomic orbitals or linear combinations of them. In Figure 8 this was done by shading the oxygen 2p contributions and leaving the 2s oxygen and the silicon contributions blank.
Figure 8: Band structure and density of states of the silicon dioxide analogue of Zeolite A. The oxygen 2p densities are projected out.

This shows that the HOMO region consists of nearly pure oxygen 2p lone pairs which we denote as $|O<$. Some bands below -14 eV are significantly bent and contribute to the Si-O bonding. All this has close analogy to the $H_8Si_8O_{12}$ which means that this molecule is a good starting point for describing the electronic structure of zeolite A. The Al^{3+} centres in Zeolite A cause a negatively charged framework, the charge of which is compensated by exchangeable cations. This influences the band structure to some extent. It is, however, reasonable to assume that the HOMO and the LUMO regions are similar to those illustrated in Figure 8. Provided this is correct, we can guess that the HOMO-LUMO region of a Zeolite A containing monovalent cations of the type Li^+, ..., Cs^+, Cu^+, Ag^+, Au^+ can be drawn as illustrated on the left side of Figure 9. It consists of the oxygen lone pair region denoted as $|O<$, the empty ns' level of the metal cations M^+ and of the LUMO region of the zeolite which may be modified by np' contributions of M^+. The ns' and np' levels are modified to some extent with respect to the ns and np levels of the free cations by their interaction with the surrounding [56,57]. This scheme suggests the occurrence of ligand to metal charge transfer (LMCT) transitions of the ns$'\leftarrow|O< $ type, exciting an oxygen lone pair electron to the metal cation coordinated to the zeolite oxygen. The energy ΔE_{CT} needed for this transition is equal to the difference of the ionization potential $I_{pO<}$ of the oxygen lone pair and the first ionization potential I_{pM} of the metal plus a correction Δ which stands for the antibonding interaction of the empty ns' level of the metal ion M^+ with the environment [13].

$$\Delta E_{CT} (\text{ns'}\leftarrow|O<) = I_{pO<} - I_{pM} + \Delta$$ \hspace{1cm} \text{(3)}$$

This simple relation allows us to compare the energy of the charge transfer band for different situations. We do this in Table 3 for cations in water and in a silicate with oxygen lone pairs at about 10.7 eV. Such transitions were assumed to be important in the
photochemical oxidation of water with visible light observe in Ag⁺-A zeolite containing systems. We recently found, however, that Cl⁻ present in these systems, which leads to the formation of silver chloride, is important in the water oxidation reaction [58,59].

Table 3: Estimation of the ns'←|O< LMCT charge transfer transition energy ΔE_{CT} for the cations M⁺ in water and in a silicate with Ip_{ns'←|O}<. 12.6 eV and 10.7 eV, respectively. Cu⁺ and Au⁺ ions in water are not stable. Au⁺ is expected to be stable in dry zeolites but it has not yet been reported.

| M | Ip_M / eV | ΔE_{CT}(ns'←|O<) / eV | Ip_{ns'←|O<} = 12.6 eV | Ip_{ns'←|O<} = 10.7 eV |
|----|-----------|------------------------|------------------------|------------------------|
| Li | 5.36 | 56'216 | 43'067 |
| Na | 5.12 | 60'326 | 44'183 |
| K | 4.32 | 66'778 | 51'454 |
| Rb | 4.16 | 68'078 | 52'745 |
| Cs | 3.87 | 70'407 | 55'083 |
| Cu | 7.68 | 39'679 | 24'356 |
| Ag | 7.54 | 40'808 | 25'485 |
| Au | 9.18 | 27'582 | 12'258 |

ns'←|O< charge transfer transitions have been observed in Cu⁺-A, Cu⁺-X and Ag⁺-A zeolites in the region of 28,000 cm⁻¹ [57,59]. This means that Δ is in the order of 0.5 eV or 4,000 cm⁻¹. Ag⁺ in water absorbs at about 225 nm, in agreement with (3), but at the moment there is no further evidence available to support this equation which nevertheless may be regarded as a useful zero order approximation. Luminescence of the Cu⁺-A, Cu⁺-X and Ag⁺-A zeolites after ns'←|O< excitation occurs at 500-700 nm, depending on the samples and the conditions [57,59]. This means that the Stokes shift is in the order of 8,000 cm⁻¹. Excitation of an electron from the oxygen lone pair level |O< into the empty ns' orbital of the metal cation causes formal reduction of M⁺ to M⁰.

Figure 9: Development of the energy diagram of a metal cation in a silicate (zeolite) framework. The HOMO region consists of many closely spaced localized states strongly concentrated on the oxygen atoms. We call this region lone pair region of the silicate and abbreviate it as |O<. Some of the np' levels may reach into the LUMO region of the silicate. Three lines have been added to indicate this.
The radius r of M^+ is significantly smaller than that of M^0 ($r(Cu^+) = 0.96 \text{ Å}$, $r(Cu^0) = 1.35 \text{ Å}$, $r(Ag^+) = 1.26 \text{ Å}$, $r(Ag^0) = 1.6 \text{ Å}$). This means that the LMCT transition blows up the metal by $\Delta r \approx 0.3-0.4 \text{ Å}$ which has to change its position. As a consequence, the n^s level relaxes to a state of lower energy which we denote as $(|O\rangle^0(n^s)^1$ state [60]. It can relax to the ground state by emitting a photon with a large Stokes shift, as illustrated in Figure 9 on the right side.

12.4 R'R_7Si_8O_{12} and R'R''R_6Si_8O_{12} molecules

A few mono substituted R'R_7Si_8O_{12} molecules have been synthesized within the last few years, see Table 1. The crystal and the vibrational structure of the three examples illustrated in Scheme IV has been investigated in detail [23,40,61]. It was found that the O-Si-O angles, α, are inversely proportional to the Si-O distances, d, and that the relationship conforms to the equation $d(\text{Si-O})/\AA = 1.59 + [1.6 \times 10^{-8}(180-\alpha)^4]$. The Si_8O_{12}-cage symmetry of $C_6H_{13}(H_7Si_8O_{12})$ lies closer to both C_{3v} and O_h than does $[Co(CO)_4(H_7Si_8O_{12})]$, and on average also closer to C_{3v} symmetry than $H_8Si_8O_{12}$ in crystals. The vibrational spectra of monosubstituted spherisoloxanes of the type RH_7Si_8O_{12} can be understood as a superposition of the spectral features of H_8Si_8O_{12} and of the substituent R. This was shown by phenomenological comparison of the IR and the FT-Raman spectra and by a detailed normal coordinate analysis [24,40,51,61]. It is illustrated in Figure 10 where we show the Raman spectrum of styryl-H_7Si_8O_{12}. The spectrum is divided into the lines assigned to the siloxane cage, the lines belonging to the substituent, and the vibrations involving the Si-C bond. This information may become useful, as the application range of substituted spherisoloxanes increases.

![Scheme IV](image-url)

In this context we note that the Si-H, Si-C and Si-Cl stretching frequencies of substituted and unsubstituted R_8Si_8O_{12} molecules were observed to be larger than in most other siloxane compounds.
Figure 10: FT-Raman spectrum of styryl-H_{7}Si_{8}O_{12}, divided into the lines of the siloxane cage, of the substituent, and of the Si-C stretch and O-Si-C bend motion. The most intense peak in the spectrum of the H_{7}Si_{8}O_{12} fragment is cut [24].

We found that this is due to the anti conformation present in the spherasiloxanes. An MO calculation on XSi(OSiMe_{3})_{3} (X=H, CH_{3}; Cl) in its syn and anti position illustrated in Figure 11 lead to the result that the Si-X bond order is significantly larger for anti than for syn [62].

Only a few R'R''R'''Si_{8}O_{12} molecules have been synthesized in pure form, most of them by Marssmann et al. [26], see Table 1. Three (F-CH=CH-)_{2}(CH_{3}CH_{2}-)_{6}Si_{8}O_{12} isomers which we characterized by NMR and MS are illustrated in Scheme V.
Figure 11: Anti ($\varphi = 0^\circ$) and syn ($\varphi = 180^\circ$) conformation of $X\text{Si(OSiMe}_3)_3$. Syn is the stable form of these molecules while anti is realized in spherioloxanes.

Scheme V

They were prepared by hydrosilation of phenylacetylene and separated by HPLC. The selectivity of the anti-Markovnikoff products was $\sim 90\%$ [25,44]. $R'R_{n}\text{Si}_{8}\text{O}_{12}$ molecules are very attractive for building structurally well defined donor/acceptor systems D/A of the type A-Si(OSi)$_n$OSi-D, n=0,1,2. In Scheme VI we illustrate the three octasilasesquioxane D/A isomers. It would be very interesting to have such molecules at hand. Since they have not yet been prepared we add a few theoretical considerations. Chemically linked D/A systems are used in studies of long-range trough-space and trough-bond interactions in the electronic ground and excited states [63,64].

Scheme VI
The Si-O-Si bridge is not well understood so far but quantumchemical calculations indicate that through bond interactions over short bridges range from isolating behaviour to significant coupling, depending on the nature of the substituents and on the conformation. Such D/A systems can be compared with their purely organic analogues, based on eg. c-hexane bridges with naphthyl- and biphenyl- as donor and acceptor, respectively, which were studied in detail [65]. This comparison is illustrated in Scheme VII.

Scheme VII

According to our actual understanding the electron transfer rate constant \(k_{ET} \) from a donor D to an acceptor A can be described by

\[
k_{ET} = H_{DA}^2 \times \text{Funktion of several parameters}
\]

\(H_{DA} \) describes the electronic coupling between the donor and the acceptor via the bridge. It can be calculated and the EHMO method has been found to be useful for this purpose [66]. Calculations on different D/A systems with an octasilasesquioxane bridge indicate that \(|H_{DA}| \) ranges from zero to significant values, thus indicating that the properties of siloxane bridges ranges from insulating to conducting behaviour, depending on its lengths, the nature of the D/A system and the conformation. A result obtained for naphthyl- as donor and biphenyl- as acceptor is reported in Figure 12. We observe zero coupling at a dieder angle of 90 ° and a coupling of 8.2 cm\(^{-1}\) at 0 °. The electron transfer rate constant at an angle of 0 ° corresponds approximately to that expected for the c-hexane based bridge on the right side of Scheme VIII.
Scheme VIII

Marcus and Siddarth reported that the distance dependence of \(H_{DA} \) can be approximated as

\[
H_{DA}^2 \propto e^{-\beta r_{DA}}
\]

(5)

where \(r_{DA} \) is the distance between the Donor and the acceptor and \(\beta \) depends on the nature of the bridge and the D/A system. For c-hexane based bridges they found \(\beta = 0.9-1.0 \ \text{Å}^{-1} \). We have calculated \(\beta = 0.85 \ \text{Å}^{-1} \) for the octasilasequioxane bridge. It would be very interesting to test these preliminary theoretical results by experiments. To do this, the substances must first be synthesized in pure form.

Figure 12: Electronic coupling term \(H_{DA} \) as a function of the dieder angle \(\theta (\theta_A=\theta_D=0) \). The plane of the aromatic rings is perpendiccular to the plane of the top 4 Si atoms at \(\theta=0 \).
Acknowledgements

This work was financed by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung, project NF 20.040598.94/1, and by the Schweizerisches Bundesamt für Energiewirtschaft, project BEW (93)034.

References